Math 115
Fall 2017
Lecture 23

Solving Polynomial Equations:
Zero-Product Rule or Zero-factor Thrum If $A \cdot B=0$, then

$$
A=0 \text { or } B=0
$$

(Maybe both)

Solve $(x-3)(x+7)=0$
By Zero -factor property,

$$
\begin{gathered}
x-3=0 \quad \text { or } x+7=0 \\
x=3 \quad \text { or } x=-7 \\
\{-7,3\}
\end{gathered}
$$

Solve $(2 x+5)(4 x-9)(x-10)=0$
By Z.F.P., $2 x+5=0,4 x-9=0$, or

$$
\begin{array}{cc}
2 x=-5 & 4 x=9 \\
x=\frac{-5}{2} & x=\frac{9}{4} \\
& \left\{\frac{-5}{2}, \frac{9}{4}, 10\right\}
\end{array}
$$

Things to look for:

$$
\text { RHO }=0
$$

LHS: Completely factored

Use Zero -factor Prop. to Solve:

$$
\begin{aligned}
& \text { 1) }(x-4)(x+1)=0 \\
& \text { 2) }(8 x+3)(3 x-8)=0 \\
& x-4=0 \text { or } x+1=0 \\
& 8 x+3=0 \text { or } 3 x-8=0 \\
& x=4 \\
& 3 x=8 \\
& x=\frac{8}{3} \\
& \left\{\frac{-3}{8}, \frac{8}{3}\right\}
\end{aligned}
$$

To Solve a Polynomial eq:

1) Make $\mathrm{RHS}=0$
2) Factor LHS Completely.
3) use Zevo-factor Property to Solve

Solve $\quad x^{2}-2 x-24=0$

$$
\begin{array}{rl}
& (x-6)(x+4)=0 \\
\text { by Z.F.P. } \Rightarrow & x-6=0 \text { or } x+4=0 \\
x=6 & x=-4
\end{array} \quad\{-4,6\}
$$

Solve $x^{2}-13 x=-36$

$$
\text { RHS }=0 \Rightarrow x^{2}-13 x+36=0
$$

LHS must be

$$
\begin{aligned}
& \text {-Hs must be } \\
& \text { factored completely }
\end{aligned} \Rightarrow(x-9)(x-4)=0
$$

Now use Z.F.P. $\Rightarrow x-9=0$ or $x-4=0$

$$
\begin{aligned}
& x=9 \quad x=4 \\
& \{4,9\}
\end{aligned}
$$

Solve $2 x^{2}-5=3 x$
(1) Make RHS Zero

$$
2 x^{2}-5-3 x=0
$$

(2) Factor LHS completely

$$
\begin{aligned}
& 2 x^{2}-3 x-5=0 \\
& (2 x-5)(x+1)=0
\end{aligned}
$$

(3) Use Z.F.P., and Solve $2 x=5 \quad x=-1$

$$
2 x-5=0 \text { or } x+1=0 \quad x=5 / 2 \quad\{-1,5 / 2\}
$$

Solve $4 x^{2}=7-3 x$
(1) Make RHS Zero.

$$
4 x^{2}-7+3 x=0
$$

(2) Factor LHS completely

$$
\begin{aligned}
& 4 x^{2}+3 x-7=0 \\
& (4 x+7)(x-1)=0
\end{aligned}
$$

(3) Now use Zero-factor Them to Solve

$$
\begin{array}{cc}
4 x+7=0 & \text { or } \\
4 x=-7 & x-1=0 \\
x=\frac{-7}{4} & x=1
\end{array} \quad\left\{\frac{-7}{4}, 1\right\}
$$

find x :
Rectangle

$$
A=L W
$$

So

$$
x(x+3)=40
$$

(1) Distribute, Simplify, and make RHS Zero.

$$
x^{2}+3 x=40
$$

$$
x^{2}+3 x-40=0
$$

(2) factor LHS Completely

$$
(x+8)(x-5)=0
$$

(3) Use Z.F.P.,$x+8=0$

$$
x-5=0 \quad x=5
$$

find x :
Rectangle

$$
2 x \quad A=88 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& 2 x(3 x-1)=88 \\
& 6 x^{2}-2 x-88=0
\end{aligned}
$$

Divide by 2 to reduce

$$
\begin{aligned}
& 3 x^{2}-x-44=0 \longrightarrow P=-132 \dot{\sum} \quad-12=-1 \\
& (x-4)(3 x+11)=0 \underbrace{3 x^{2}-12 x}+\underbrace{11 x-44}=0
\end{aligned}
$$

Now use Z.F.P. to Solve $\quad 3 x(x-4)+11(x-4)=0$

$$
\begin{aligned}
& x-4=0 \text { or } 3 x+11=0 \\
& x=4 \\
& 3 x=-11 \\
& 2(4)=8 \\
& A=L W \\
& =11.8 \\
& =88
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solve } \begin{array}{l}
x^{2}-36=0 \\
\qquad \begin{array}{r}
(x+6)(x-6)=0 \\
\text { by Z.F.P. } \quad x+6=0
\end{array} \text { or } x-6=0 \\
\{-6,6\} \text { or }\{ \pm 6\}
\end{array}
\end{aligned}
$$

