

Solving Polynomial Equations:
Zero-Product Rule or Zero-Factor Throm
If
$$A \cdot B = 0$$
, then
 $A = 0$ or $B = 0$
(Maybe both)

Solve
$$(x - 3)(x + 7) = 0$$

By Zero-Foctor Property,
 $x - 3 = 0$ or $x + 7 = 0$
 $[x = 3]$ or $[x = -7]$
 $\begin{cases} -7, 3 \end{cases}$

Use Zero - Factor Prop. to Solve:
1)
$$(x - 4)(x + 1) = 0$$

 $x - 4 = 0$ or $x + 1 = 0$
 $x - 4 = 0$ or $x + 1 = 0$
 $x - 4 = 0$ or $x + 1 = 0$
 $x - 4 = 0$ or $x + 1 = 0$
 $8x + 3 = 0$ or $3x - 8 = 0$
 $8x = 3$ $3x = 8$
 $7 = \frac{3}{8}$
 $7 = \frac{8}{3}$
 $7 = \frac{8}{3}$
 $7 = \frac{8}{3}$
 $7 = \frac{8}{3}$

To Solve a Polynomial eqn:
1) Make RHS=0
2) Factor LHS Completely.
3) Use Zero-Factor Property to Solve
Solve
$$\chi^2 - 2\chi - 24 = 0$$

 $(\chi - 6)(\chi + 4) = 0$
by Z.F.P. $\Rightarrow \chi - 6 = 0$ or $\chi + 4 = 0$ $\{-4,6\}$
 $\chi = 6$ $\chi = -4$

Solve
$$\chi^2 - 13\chi = -36$$

RHS=0 $\Rightarrow \chi^2 - 13\chi + 36=0$
LHS must be $\Rightarrow (\chi -9)(\chi -4)=0$
Sactored completely $\Rightarrow (\chi -9)(\chi -4)=0$
Now use Z.F.P. $\Rightarrow \chi -9=0$ or $\chi -4=0$
 $\chi =9$ $\chi =4$
 $\chi =9$ $\chi =4$

Solve
$$2\chi^{2} - 5 = 3\chi$$

(1) Make RHS Zero
 $2\chi^{2} - 5 - 3\chi = 0$
(2) Factor LHS completely
 $2\chi^{2} - 3\chi - 5 = 0$
 $(2\chi - 5)(\chi + 1) = 0$
(3) USE Z.F.P., and Solve $2\chi = 5$ $\chi = -1$
 $2\chi - 5 = 0$ or $\chi + 1 = 0$
 $\chi = 5\chi = 5$ $\chi = -1$
 $\chi = 5\chi = 0$ $\chi = 5\chi = -1$

Solve
$$4x^2 = 7 - 3x$$

(1) Make RHS Zero.
 $4x^2 - 7 + 3x = 0$
(2) Factor LHS completely
 $4x^2 + 3x - 7 = 0$
 $(4x + 7)(x - 1) = 0$
(3) Now use Zero - Factor Thrue to Solve
 $4x + 7 = 0$ or $x - 1 = 0$
 $4x + 7 = 0$ or $x - 1 = 0$
 $4x = -7$
 $x = -\frac{7}{4}$
 $x = -\frac{7}{4}$

find
$$\chi$$
:
Rectangle
 $A = LW$
 χ
 $A = 40 \text{ H}^2$
 $\chi = 40 \text{ H}^2$
 $\chi = 40 \text{ H}^2$
 $\chi = 43$
 $\chi = 40 \text{ H}^2$
 $\chi = 43 \chi$
 $\chi^2 + 3\chi = 40$
 $\chi^2 + 3\chi$

find
$$\chi$$
:
Rectangle
 $A = LW$
 2χ $A = 88 m^2$
 $3\chi - 1$ $6\chi^2 - 2\chi - 88 = 0$
Divide by 2 to reduce
 $3\chi^2 - \chi - 44 = 0$ $P = -132 \notin S = -1$
 $(\chi - 4)(3\chi + 11) = 0$ $3\chi^2 - 12\chi + 11\chi - 14 = 0$
Now use Z.F.P. to Solve $3\chi(\chi - 4) + 11(\chi - 4) = 0$

